
Jarrar © 2013 1

Dr. Mustafa Jarrar

Sina Institute, University of Birzeit

mjarrar@birzeit.edu

www.jarrar.info

Mustafa Jarrar: Lecture Notes on Description Logic,

Birzeit University, Palestine

Spring Semester, 2012

Artificial Intelligence

Description Logic
(and business rules)

http://sina.birzeit.edu/
http://www.birzeit.edu/
mailto:mjarrar@birzeit.edu
http://www.jarrar.info/
http://creativecommons.org/choose/results-one?q_1=2&q_1=1&field_commercial=n&field_derivatives=n&field_jurisdiction=&field_format=&field_worktitle=Lecture+Notes&field_attribute_to_name=Mustafa+Jarrar,+Birzeit+University&field_attribute_to_url=www.jarrar.
http://creativecommons.org/choose/results-one?q_1=2&q_1=1&field_commercial=n&field_derivatives=n&field_jurisdiction=&field_format=&field_worktitle=Lecture+Notes&field_attribute_to_name=Mustafa+Jarrar,+Birzeit+University&field_attribute_to_url=www.jarrar.

Jarrar © 2013 2

Watch this lecture and download the slides from

http://jarrar-courses.blogspot.com/2011/11/artificial-intelligence-fall-2011.html

http://creativecommons.org/choose/results-one?q_1=2&q_1=1&field_commercial=n&field_derivatives=n&field_jurisdiction=&field_format=&field_worktitle=Lecture+Notes&field_attribute_to_name=Mustafa+Jarrar,+Birzeit+University&field_attribute_to_url=www.jarrar.
http://creativecommons.org/choose/results-one?q_1=2&q_1=1&field_commercial=n&field_derivatives=n&field_jurisdiction=&field_format=&field_worktitle=Lecture+Notes&field_attribute_to_name=Mustafa+Jarrar,+Birzeit+University&field_attribute_to_url=www.jarrar.
mailto:mjarrar@birzeit.edu
http://www.jarrar.info/

Jarrar © 2013 3

This lecture

• What and Why Description Logic

• ALC Description Logic

• Reasoning services in Description Logic

Lecture Keywords:

الاستنباط، الاستنتاج المنطقي، مهام الاستنتاج، قواعد ،المنطق، المنطق الوصفي

جمل لالاستنتاج، قواعد العمل، النمذجة المفاهيمية، طرق الاستنتاج ،صحة ا

الحدود، التناقض المنطقية،

Logic, Description Logic, DL, ALC Description Logic, SHOIN, AL, DLR, Tbox, Abox, Reasoning, Reasoning

services, Reasoners, Racer, HermiT, Business Rules, Conceptual Modeling, satisfiability, Unsatisfiability,

Jarrar © 2013 4

Reading Material

1. All slides + everything I say

2. Prof. Enrico Franconi: Lecture notes on Description Logic
http://www.inf.unibz.it/~franconi/dl/course/

3. D. Nardi, R. J. Brachman. An Introduction to Description Logics. In

the Description Logic Handbook, edited by F. Baader, D. Calvanese,

D.L. McGuinness, D. Nardi, P.F. Patel-Schneider, Cambridge University

Press, 2002, pages 5-44.

http://www.inf.unibz.it/~franconi/dl/course/dlhb/dlhb-01.pdf

4. Sean Bechhofer, “The DIG Description Logic Interface: DIG/1.1 ”

http://racer-systems.com/dl.php?file=NativeLibraries%252FDIGinterface11.pdf&typ=file&name=DIGinterface11.pdf

Only Sections 2.1 and 2.2 are required (= the first 32 pages)

* The slides in this lecture are based on and modify material largely from [2]

http://www.inf.unibz.it/~franconi/dl/course/
http://www.inf.unibz.it/~franconi/dl/course/dlhb/dlhb-01.pdf
http://racer-systems.com/dl.php?file=NativeLibraries/DIGinterface11.pdf&typ=file&name=DIGinterface11.pdf

Jarrar © 2013 5

Why Description Logics?

If FOL is directly used without some kind of restriction, then

• The structure of the knowledge/information is lost (no

variables, concepts as classes, and roles as properties),

• The expressive power of FOL is too high for having good

(computational properties and efficient procedures).

Based on [2]

Jarrar © 2013 6

Description Logics

Description logics are a family of logics concerned with knowledge
representation.

A description logic is a decidable fragment of first-order logic, associated
with a set of automatic reasoning procedures.

The basic constructs for a description logic are the notion of a concept
and the notion of a relationship.

Complex concept and relationship expressions can be constructed from
atomic concepts and relationships with suitable constructs between
them.

Example:
HumanMother ⊑ Female ⊓ HasChild.Person

Jarrar © 2013 7

Axioms, Disjunctions and Negations

x. Teaching-Assistant(x)  Undergrad(x)  Professor(x)

Teaching-Assistant ⊑ Undergrad ⊔ Professor

A necessary condition in order to be a teaching assistant is to be either

not undergraduated or a professor. Clearly, a graduated student being a

teaching assistant is not necessarily a professor; moreover, it may be

the case that some professor is not graduated.

x. Teaching-Assistant(x) ↔  Undergrad(x)  Professor(x)

Teaching-Assistant ≐ Undergrad ⊔ Professor

When the left-hand side is an atomic concept, the ⊑ symbol introduces

a primitive definition (giving only necessary conditions) while the ≐
symbol introduces a real definition, with necessary and sufficient

conditions.

In general, it is possible to have complex concept expressions at the left-

hand side as well.

Based on [2]

Jarrar © 2013 8

Description Logics

Most known description logics are :

A more practical and expressive description logic.

C, D  A | ⊤ | ⊥|¬A | C ⊓ D | R.C | R.⊤
ALC

Very expressive description logic,

Capable of representing most database constructs.DLRidf

Very popular description logic.

The logic underlying OWL.
SHOIN

The simplest and less expressive description logic.

C, D  A | C ⊓ D | R.C | R
FL¯

Jarrar © 2013 9

ALC Description logic (Syntax and Semantic)

Constructor Syntax Semantics

Primitive concept A AI  I

Primitive role R RI  I  I

Top ⊤ I

Bottom ⊥ 

Complement C I \ CI

Conjunction C ⊓ D CI  DI

Disjunction C ⊔ D CI  DI

Universal quantifier R.C {x | y. RI (x,y)  CI(y)}

Extensional quantifier R.C {x | y. RI (x,y)  CI(y)}

Woman ⊑ Person ⊓ Female

Parent ⊑ Person ⊓ hasChild.⊤

Man ⊑ Person ⊓ Female

NotParent ⊑ Person ⊓ hasChild.⊥

Examples:

Jarrar © 2013 10

Closed Propositional Language

Conjunction (⊓) is interpreted as intersection of sets of individuals.

Disjunction (⊔) is interpreted as union of sets of individuals.

Negation () is interpreted as complement of sets of individuals.

R.⊤ R.

(C ⊓ D) C ⊔ D

(C ⊔ D) C ⊓ D

(R.C)  R.C

(R.C) R.C

Based on [2]

Jarrar © 2013 11

Formal Semantics

An interpretation I = (I , .I) consists of:

a nonempty set I (the domain)

a function .I (the interpretation function)

that maps

– every individual to an element of I

– every concept to a subset of I

– every role to a subset of I  I

An interpretation function .I is an extension function if and

only if it satisfies the semantic definitions of the

language.

Based on [2]

Jarrar © 2013 12

DL Knowledge Base

DL Knowledge Base () normally separated into two parts:

 = Tbox, Abox

– TBox (Terminological Box) is a set of axioms in the form of

(C ⊑ D , C ≐ D) describing structure of domain (i.e., schema),

Example:

HappyFather ≐ Man ⊓ hasChild.Female

Elephant ⊑ Animal ⊓ Large ⊓ Grey

– ABox (Assertion Box) is a set of axioms in the form of

(C(a), R(a, b)) describing a concrete situation (data),

Example:

HappyFather (John)

hasChild(John,Mary)

Jarrar © 2013 13

Knowledge Bases (Example)

Tbox:

Student≐ Person ⊓ NAME.String ⊓

ADDRESS.String ⊓

ENROLLED.Course

TEACHES.Course ⊑ Undergrad ⊓ Professor

Abox:

Student(Ali)

ENROLLED(Ali; Comp338)

(Student ⊔ Professor)(Dima)

Based on [2]

Jarrar © 2013 14

TBox: Descriptive Semantics

An interpretation I satisfies the statement C ⊑ D if CI  DI.

An interpretation I satisfies the statement C ≐ D if CI = DI.

An interpretation I is a model for a TBox T if I satisfies all

statements in T .

Based on [2]

Jarrar © 2013 15

Abox Interpretation

If I = (I, .I) is an interpretation,

C(a) is satisfied by I if aI  CI.

R(a, b) is satisfied by I if (aI, bI)  RI.

A set A of assertions is called an ABox.

An interpretation I is said to be a model of the ABox A if every

assertion of A is satisfied by I. The ABox A is said to be satisfiable

if it admits a model.

An interpretation I = (I, .I) is said to be a model of a knowledge base

 if every axiom of  is satisfied by I.

A knowledge base  is said to be satisfiable if it admits a model.

Based on [2]

Jarrar © 2013 16

Logical Implication

 ╞  if every model of  is a model of 

Example:

TBox:

TEACHES.Course⊑ Undergrad ⊔ Professor

ABox:

TEACHES(Rami,Comp338), Course(comp388),

Undergrad(Rami)

╞ Professor(Rami) ?

Based on [2]

Jarrar © 2013 17

Logical Implication

What if:

TBox:

TEACHES.Course⊑ Undergrad ⊔ Professor

ABox:

TEACHES(Rami,Comp388), Course(Comp388),

Undergrad(Rami)

 ╞ Professor(Rami) ?

 ╞ Professor(Rami) ?

Based on [2]

Jarrar © 2013 18

Reasoning Services

 Remember that a DL is typically associated with reasoning procedures.

 There are several primitive/common reasoning services that most DL

reasoners support:

Concept Satisfiability

 | C  ⊥ Student ⊓ Person

the problem of checking whether C is satisfiable w.r.t. , i.e. whether there exists a

model I of  such that CI  

Subsumption

 |= C ⊑ D Student ⊑ Person

the problem of checking whether C is subsumed by D w.r.t. , i.e. whether CI  DI in

every model I of 

Satisfiability

 |= Student ≐ Person

the problem of checking whether  is satisfiable, i.e. whether it has a model.

Based on [2]

Jarrar © 2013 19

Reasoning Services (cont.)

Instance Checking

 |= C(a) Professor(john)

the problem of checking whether the assertion C(a) is satisfied in every model of 

Retrieval

{a |  |= C(a) } Professor  Dima

Realization

{C |  |= C(a) } Dima  Professor

Based on [2]

Jarrar © 2013 20

Reduction to Satisfiability

Concept Satisfiability

 |= C  ⊥ ↔ exists x s.t.   {C(x)} has a model.

Subsumption

 |= C ⊑ D ↔   {C ⊓ D(x)} has no models.

Instance Checking

 |= C(a) ↔   {C(x)} has no models.

D

D

C

Based on [2]

Jarrar © 2013 21

Some extensions of ALC

Constructor Syntax Semantics

Primitive concept A AI  I

Primitive role R RI  I  I

Top ⊤ I

Bottom ⊥ 

Complement C I \ CI

Conjunction C⊓D CI  DI

Disjunction C⊔D CI  DI

Universal quantifier R.C {x | y.RI (x,y)  CI(y)}

Extensional quantifier R.C {x | y.RI (x,y)  CI(y)}

Jarrar © 2013 22

Some extensions of ALC

Constructor Syntax Semantics

Primitive concept A AI  I

Primitive role R RI  I  I

Top ⊤ I

Bottom ⊥ 

Complement C I \ CI

Conjunction C⊓D CI  DI

Disjunction C⊔D CI  DI

Universal quantifier R.C {x | y.RI (x,y)  CI(y)}

Extensional quantifier R.C {x | y.RI (x,y)  CI(y)}

Cardinality (N)
≥n R {x | #{y | RI(x,y)} ≥ n}

≤n R {x | #{y | RI(x,y)} ≥ n}

Qual. cardinality (Q)
≥n R.C {x | #{y | RI(x,y)  CI(y)} ≥ n}

≤n R.C {x | #{y | RI(x,y)  CI(y)} ≥ n}

Enumeration (O) {a1 … an} {aI
1 … aI

n}

Selection (F) f : C {x  Dom(fI) | CI(fI(x))}

Jarrar © 2013 23

Cardinality Restriction

Role quantification cannot express that a woman has at least 3 (or at

most 5) children.

Cardinality restrictions can express conditions on the number of fillers:

BusyWoman ≐ Woman ⊓ (≥ 3 CHILD)

ConsciousWoman ≐ Woman ⊓ (≤ 5 CHILD)

Notice:

(≥1 R)  (R.)

Based on [2]

Jarrar © 2013 24

Cardinality Restriction

BusyWoman ≐ Woman ⊓ (≥ 3 CHILD)

ConsciousWoman ≐ Woman ⊓ (≤ 5 CHILD)

Mary: Woman,

CHILD:John,

CHILD:Sui,

CHILD:Karl

|= ConsciousWoman(Mary) ?

Based on [2]

Jarrar © 2013 25

Roles as Functions

A role is functional, is the filler functionally depends on the

individual, i.e., the role can be considered as a function:

R(x, y)  f(x) = y.

For example, the roles CHILD and PARENT are not

functional, while the roles MOTHER and AGE are

functional.

If a role is functional, we write:

 f.C  f.c (selection operator)

Based on [2]

Jarrar © 2013 26

Individuals

In every interpretation different individuals are assumed to

denote different elements, i.e. for every pair of individuals

a, b, and for every interpretation I, if a  b then aI  bI.

This is called the Unique Name Assumption and is usually

assumed in database applications.

Example: How many children does this family have?
Family(f), Father(f,john), Mother(f,sue),

Son(f,paul), Son(f,george), Son(f,alex)

|= (≥ 3 Son)(f)

Based on [2]

Jarrar © 2013 27

Enumeration Type (one-of)

Weekday ≐ {mon, tue, wed, thu, fri, sat, sun}

WeekdayI ≐ {monI, tueI, wedI, thuI, friI, satI, sunI}

Citizen ≐ (Person ⊓ LIVES.Country)

Palestinian ≐ (Citizen ⊓ LIVES.{Palestine})

Jarrar © 2013 28

Racer (http://www.racer-systems.com/products/racerpro/index.phtm)

http://www.racer-systems.com/products/racerpro/index.phtm

Jarrar © 2013 29

• They offer reasoning services for multiple TBoxes and ABoxes.

• They run as background reasoning engines.

• They understand DIG, which is a simple protocol (based on HTTP)

along with an XML Schema.

Description Logic Reasoners

<impliesc>

<catom name=“Student"/>

<catom name=“Person"/>

</impliesc>

Student ⊑ Person• Example:

• For example:

HermiT

Jarrar © 2013 30

DIG Interface (http://dig.sourceforge.net/)

http://dig.sourceforge.net/

Jarrar © 2013 31

DIG Protocol

DIG is only an XML schema for a description logic along with ask/tell

functionality

You write a new Knowledge base (using the DIG XML syntax), and send

it to Racer using the TELL functionality.

You can then write you Query/Question (using the DIG, XML syntax),

and send it to Racer using the ASK functionality.

You may communicate with the Racer through HTTP or SOAP.

Jarrar © 2013 32

Create e a new Knowledge Base

<?xml version="1.0" encoding="UTF-8"?>

<newKB

xmlns="http://dl.kr.org/dig/2003/02/lang"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://dl.kr.org/dig/2003/02/lang

http://dl-web.man.ac.uk/dig/2003/02/dig.xsd"/>

<?xml version="1.0" encoding="UTF-8"?>

<response

xmlns="http://dl.kr.org/dig/2003/02/lang"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://dl.kr.org/dig/2003/02/lang

http://dl-web.man.ac.uk/dig/2003/02/dig.xsd">

<kb uri="urn:uuid:abcdefgh-1234-1234-12345689ab"/>

The Response Message

The newKB Message

This URI should then be used during TELL and

ASK requests made against the knowledge base

Jarrar © 2013 33

Tell Syntax

<?xml version="1.0" encoding="ISO-8859-1"?>
<tells

xmlns="http://dl.kr.org/dig/2003/02/lang"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://dl.kr.org/dig/2003/02/lang
http://dl-web.man.ac.uk/dig/2003/02/dig.xsd"
uri="urn:uuid:abcdefgh-1234-1234-12345689ab">

<defconcept name="driver"/>
<equalc>

<catom name="driver"/>
<and>

<catom name="person"/>
<some>

<ratom name="drives"/>
<catom name="vehicle"/>

</some>
</and>

</equalc>
<defconcept name="person"/>
<defconcept name="vehicle"/>
<defrole name="drives"/>

</tells>

A TELL request must contain in its body a tells element, which itself

consists of a number of tell statements.

Example: Driver ⊑ Person ⊓ Drives.Vehicle

Based on [4]

Jarrar © 2013 34

Tell Syntax

Tell Language

Primitive
Concept
Introduction

<defconcept name="CN"/>
<defrole name="CN"/>
<deffeature name="CN"/>
<defattribute name="CN"/>
<defindividual name="CN"/>

Concept
Axioms

<impliesc>C1 C2</impliesc>
<equalc>C1 C2</equalc>
<disjoint>C1... Cn</disjoint>

Role
Axioms

<impliesr>R1 R2</impliesc>
<equalr>R1 R2</equalr>
<domain>R E</domain>
<range>R E</range>
<rangeint>R</rangeint>
<rangestring>R</rangestring>
<transitive>R</transitive>
<functional>R</functional>

Individual
Axioms

<instanceof>I C</instanceof>
<related>I1 R I2</related>
<value>I A V</value>

Concept Language

Primitive
Concepts

<top/>
<bottom/>
<catom name="CN"/>

Boolean
Operators

<and>E1... En</and>
<or>E1... En</or>
<not>E</not>

Property
Restrictions

<some>R E</some>
<all>R E</all>
<atmost num="n">R E</atmost>
<atleast num="n">R E</atleast>
<iset>I1... In</iset>

Concrete
Domain
Expressions

<defined>A</defined>
<stringmin val="s">A</stringmin>
<stringmax val="s">A</stringmax>
<stringequals val="s">A</stringequals>
<stringrange min="s"
max="t">A</stringrange>
<intmin val="i">A</intmin>
<intmax val="i">A</intmax>
<intequals val="i">A</intequals>
<intrange min="i" max="j">A</intrange>

Role
Expressions

<ratom name="CN"/>
<feature name="CN"/>
<inverse>R</inverse>
<attribute name="CN"/>
<chain>F1... FN A</chain>
Individuals <individual name="CN"/>

Jarrar © 2013 35

Ask Syntax

An ASK request must contain in its body an asks element.

Multiple queries in one request is possible.

<?xml version="1.0"?>
<asks

xmlns="http://dl.kr.org/dig/2003/02/lang">
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://dl.kr.org/dig/2003/02/lang"
http://dl-web.man.ac.uk/dig/2003/02/dig.xsd"
uri="urn:uuid:abcdefgh-1234-1234-12345689ab">

<satisfiable id="q1">
<catom name="Vehicle"/>

</satisfiable>

<descendants id="q2">
<and>

<catom name="person"/>
<some>

<ratom name="drives"/>
<catom name="vehicle"/>

</some>
</and>

</descendants>

<types id="q3">
<individual name="JohnSmith"></individual>

</types>

</asks>

KB |= Vehicle
asks about satisfiability of

the Vehicle concept

asks for all those concepts subsumed by

the description given, i.e. all the drivers

a |  |= Peron(a) ⊓Drives.Vehicle

asks for the known types of the

given individual

C |  |= C(JohnSmith)

Jarrar © 2013 36

Ask Syntax

Ask Language

Primitive Concept
Retrieval

<allConceptNames/>
<allRoleNames/>
<allIndividuals/>

Satisfiability
<satisfiable>C</satisfiable>
<subsumes>C1 C2</subsumes>
<disjoint>C1 C2</disjoint>

Concept Hierarchy

<parents>C</parents>
<children>C</children>
<ancestors>C</ancestors>
<descendants>C<descendants/>
<equivalents>C</equivalents>

Role Hierarchy
<rparents>R</rparents>
<rchildren>R</rchildren>
<rancestors>R</rancestors>
<rdescendants>R<rdescendants/>

Individual Queries

<instances>C</instances>
<types>I</types>
<instance>I C</instance>
<roleFillers>I R</roleFillers>
<relatedIndividuals>R</relatedIndividuals>

Jarrar © 2013 37

 ْ Examples of Using Description Logic in

Conceptual Modeling and Business rules

Jarrar © 2013 38

UML Class diagram
(with a contradiction and an implication)

Person

Student Employee

PhD Student

Student ⊑ Person

PhDStudent ⊑ Person

Employee ⊑ Person

PhD Student ⊑ Student ⊓ Employee

Student ⊓ Employee ≐ ⊥

{disjoint}

Jarrar © 2013 39

Infinite Domain: the democratic company

Supervisor

Employee

Supervisor ⊑ =2 Supervises.Employee

Employee ⊑ Supervisor
Supervises

2..2

0..1

implies

“the classes Employee and Supervisor necessarily contain an infinite

number of instances”.

Since legal world descriptions are finite possible worlds satisfying the

constraints imposed by the conceptual schema, the schema is inconsistent.

Based on [3]

Jarrar © 2013 40

Example (in UML, EER and ORM)

Employee

Project

WorksFor

TopManager

Manages

Employee Project
WorksFor

Manages1..1

1..1

TopManger WorksFor

Manages

Project

TopManger

Employee
1..1

1..1

Jarrar © 2013 41

Example (in UML, EER and ORM)

Employee ⊑ =1 WorksFor.Project

TopManager ⊑ Employee ⊓ =1Manages.Project

Employee Project
WorksFor

Manages1..1

1..1

TopManger

WorksFor.Project ⊑ Manages.Project⊨
?

Jarrar © 2013 42

Another Example

Person

Course
Taught By

Study
1..3

1..1

StudentProfessor

{complete,disjoint}

Jarrar © 2013 43

Another Example

Person Car

Person ⊑ =1 Owns.Car ⊓ =1 Drives.Car

Drive ≐ Owns

Owns

• The first 1..1 cardinality constraint means that every person must owns one car.

• The second1..1 cardinality constraint means that every person must drives one car.

• The equal constraint means that every person who owns a car is allowed to only

drive that car, and vice versa.

 The equal constraint is implied by both cardinality constraints.

Drives

equal
1..1

1..1

Jarrar © 2013 44

Homework (Reason about UML/EER Diagrams)

1- Create a UML/EER diagram that contains some contradictions and

implications.

2- Formulate this diagram in description logic,

3- Write at least 5 questions (reasoning services) to know whether the

schema/concept/rule is satisfiable, and 3 questions whether

something in the schema is implied?

Hint: contradictions\implication can be achieved throw the wrong use of

disjointness and cardinality constraints (see examples in the next slide).

Please remark that this project is not only to help you practice Description Logics, but

also: 1) build correct UML/EER models and find problems automatically, 2) Reason

about rules and business rules, and 3) you think of another usage (open your mind)!

Each student should deliver one pdf file, contains: 1) the diagram 2) its

formalization in DL, 3) the reasoning questions.

Jarrar © 2013 45

Ontology

Recall that a TBox can be used to specify the meaning of a terminology.

That is, specify meaning in logic.

Recall that a TBox can be depicted in EER/UML

You may build your TBox in OWL (the Ontology Web Language), and

share it on the web, so that that others can use it a reference to

meaning of a terminology (ontology).

This will be the topic of the coming lectures.

