Mustafa Jarrar: Lecture Notes on Description Logic,
Birzeit University, Palestine
Spring Semester, 2012

Artificial Intelligence

Description Logic

(and business rules)

Dr. Mustafa Jarrar

Sina Institute, University of Birzeit

mijarrar@birzeit.edu
wWww.jarrar.info

@080

http://sina.birzeit.edu/
http://www.birzeit.edu/
mailto:mjarrar@birzeit.edu
http://www.jarrar.info/
http://creativecommons.org/choose/results-one?q_1=2&q_1=1&field_commercial=n&field_derivatives=n&field_jurisdiction=&field_format=&field_worktitle=Lecture+Notes&field_attribute_to_name=Mustafa+Jarrar,+Birzeit+University&field_attribute_to_url=www.jarrar.
http://creativecommons.org/choose/results-one?q_1=2&q_1=1&field_commercial=n&field_derivatives=n&field_jurisdiction=&field_format=&field_worktitle=Lecture+Notes&field_attribute_to_name=Mustafa+Jarrar,+Birzeit+University&field_attribute_to_url=www.jarrar.

Watch this lecture and download the slides from
http://jarrar-courses.blogspot.com/2011/11/artificial-intelligence-fall-2011.html

@080

http://creativecommons.org/choose/results-one?q_1=2&q_1=1&field_commercial=n&field_derivatives=n&field_jurisdiction=&field_format=&field_worktitle=Lecture+Notes&field_attribute_to_name=Mustafa+Jarrar,+Birzeit+University&field_attribute_to_url=www.jarrar.
http://creativecommons.org/choose/results-one?q_1=2&q_1=1&field_commercial=n&field_derivatives=n&field_jurisdiction=&field_format=&field_worktitle=Lecture+Notes&field_attribute_to_name=Mustafa+Jarrar,+Birzeit+University&field_attribute_to_url=www.jarrar.
mailto:mjarrar@birzeit.edu
http://www.jarrar.info/

This lecture

« What and Why Description Logic
« ALC Description Logic

* Reasoning services in Description Logic

Lecture Keywords:

Logic, Description Logic, DL, ALC Description Logic, SHOIN, AL, DLR, Tbox, Abox, Reasoning, Reasoning
services, Reasoners, Racer, HermiT, Business Rules, Conceptual Modeling, satisfiability, Unsatisfiability,

&‘33 cGﬁﬁuY‘ e\-@-n cgsh.‘mﬂ Eﬁﬁu\}\ chl-.\-.\:\u\ﬂ ‘g&aﬂ\ éh.'\.d\ ‘dh.'uﬂ
Jaall davac UL 3ok draliall dadaill (Jead) 321 gh (T
u'agl.'\ﬂ‘ céjéﬂ\ ‘w‘
Jarrar © 2013 3

Reading Material

. All slides + everything | say

Prof. Enrico Franconi: Lecture notes on Description Logic
http://www.inf.unibz.it/~franconi/dl/course/

D. Nardi, R. J. Brachman. An Introduction to Description Logics. In
the Description Logic Handbook, edited by F. Baader, D. Calvanese,
D.L. McGuinness, D. Nardi, P.F. Patel-Schneider, Cambridge University
Press, 2002, pages 5-44.
http://www.inf.unibz.it/~franconi/dl/course/dlhb/dIhb-01.pdf

Sean Bechhofer, “The DIG Description Logic Interface: DIG/1.1 7

http://racer-systems.com/dl.php?file=NativeLibraries%252FDIGinterfacell.pdf&typ=file&name=DIGinterfacell.pdf

Only Sections 2.1 and 2.2 are required (= the first 32 pages)

* The slides in this lecture are based on and modify material largely from [2]

Jarrar © 2013

http://www.inf.unibz.it/~franconi/dl/course/
http://www.inf.unibz.it/~franconi/dl/course/dlhb/dlhb-01.pdf
http://racer-systems.com/dl.php?file=NativeLibraries/DIGinterface11.pdf&typ=file&name=DIGinterface11.pdf

Why Description Logics?

Based on [2]

If FOL is directly used without some kind of restriction, then

» The structure of the knowledge/information is lost (no
variables, concepts as classes, and roles as properties),

* The expressive power of FOL is too high for having good
(computational properties and efficient procedures).

Jarrar © 2013 5

Description Logics

Description logics are a family of logics concerned with knowledge
representation.

A description logic is a decidable fragment of first-order logic, associated
with a set of automatic reasoning procedures.

The basic constructs for a description logic are the notion of a concept
and the notion of a relationship.

Complex concept and relationship expressions can be constructed from

atomic concepts and relationships with suitable constructs between
them.

Example: :
P HumanMother = Female ['1 dHasChild.Person

Jarrar © 2013 6

Axioms, Disjunctions and Negations

Based on [2]
- VX. Teaching-Assistant(x) — — Undergrad(x) v Professor(x)

Teaching-Assistant L —Undergrad LI Professor

A necessary condition in order to be a teaching assistant is to be either
not undergraduated or a professor. Clearly, a graduated student being a
teaching assistant is not necessarily a professor; moreover, it may be
the case that some professor is not graduated.

VvX. Teaching-Assistant(x) «<» — Undergrad(x) v Professor(x)

Teaching-Assistant = —Undergrad U Professor

When the left-hand side is an atomic concept, the &= symbol introduces
a primitive definition (giving only necessary conditions) while the =
symbol introduces a real definition, with necessary and sufficient
conditions.

In general, it is possible to have complex concept expressions at the left-
hand side as well. Jarrar © 2013 7

Description Logics

- ",

Most known description logics are

FL- The simplest and less expressive description logic.
CD->A|CnD|VRC|3IR

74[6‘ A more practical and expressive description logic.
D —> A|T|LI-A|C N D|VYRC|IRT

STHOIN Very popular description logic.

The logic underlying OWL.

D L/z Very expressive description logic,
/ Idf Capable of representing most database constructs.

Jarrar © 2013

ALC Description logic (Syntax and Semantic)

' Constructor Syntax Semantics
Primitive concept A Al = Al
Primitive role R Rl Alx Al
Top T Al
Bottom 1 0,
Complement —C A\ C!
Conjunction cnD C!' nD!
Disjunction CubDbD c' uD!
Universal quantifier VR.C {x|¥vy.R'(x,y) = C\(y)}
Extensional quantifier JdR.C {x|3y.R'(x,y) A Cl(y)}
Examples:
Woman L Person Il Female Man L Person N —Female
Parent = Person M JhasChild. T NotParent = Person r 3hasChild. L

Jarrar © 2013

7 4

Closed Propositional Language

Based on [2]

Conjunction () is interpreted as intersection of sets of individuals.
Disjunction (U) is interpreted as union of sets of individuals.

Negation (—) Is interpreted as complement of sets of individuals.

JR. T < 3R.
—(CnD)< -Cu-D
—(CuD)e -Cn-D
—(VR.C) & dR.—-C
—(7dR.C) <= VR.—-C

Jarrar © 2013

10

Formal Semantics

Based on [2]

~ An interpretation | = (A', .") consists of:
a nonempty set Al (the domain)
a function .! (the interpretation function)

that maps
— every individual to an element of A
— every concept to a subset of A!
— every role to a subset of A! x Al

An interpretation function .! is an extension function if and
only if it satisfies the semantic definitions of the
language.

Jarrar © 2013 11

DL Knowledge Base

DL Knowledge Base (X) normally separated into two parts:
> = (Tbox, Abox)

— TBox (Terminological Box) is a set of axioms in the form of
(CE D, C = D) describing structure of domain (i.e., schema),
Example:

HappyFather = Man n JhasChild.Female
Elephant E Animal r Large 1 Grey

— ABox (Assertion Box) is a set of axioms in the form of
(C(a), R(a, b)) describing a concrete situation (data),

Example:

HappyFather (John)
hasChild(John,Mary)

Jarrar © 2013 12

Knowledge Bases (Example)

" Thox:

Student = Person M ANAME.String M
JADDRESS.String M
JENROLLED.Course

dTEACHES.Course = —Undergrad M Professor

Abox:
Student(Ali)
ENROLLED(AIi; Comp338)

(Student LI Professor)(Dima)

Jarrar © 2013

Based on [2]

13

TBox: Descriptive Semantics

Based on [2]

An interpretation | satisfies the statement CE D if C! <D
An interpretation | satisfies the statement C =D if C' =D/

An interpretation | is a model fora TBox T if | satisfies all
statements in T .

Jarrar © 2013

14

Abox Interpretation

Based on [2]
If 1=(A',.") isan interpretation,

C(a) is satisfied by I ifa! € C!.

R(a, b) is satisfied by I if (a!, b") € R'.
A set A of assertions is called an ABoOxX.

An interpretation | is said to be a model of the ABox A if every
assertion of A is satisfied by I. The ABox A is said to be satisfiable

If it admits a model.

An interpretation | = (A, .!) is said to be a model of a knowledge base
> if every axiom of X is satisfied by |I.

A knowledge base ¥ is said to be satisfiable if it admits a model.

Jarrar © 2013 15

Logical Implication

Based on [2]

2 |= oL if every model of 2. is a model of O

Example:

TBox:

JTEACHES.Course = —Undergrad LI Professor

ABoxX:
TEACHES(Rami,Comp338), Course(comp388),
Undergrad(Rami)

2 |= Professor(Rami) ?

Jarrar © 2013 16

Logical Implication

e

~ What if:

TBox:
JTEACHES.Course E Undergrad LI Professor

ABoxX:
TEACHES(Rami,Comp388), Course(Comp388),
Undergrad(Rami)

2 |=Professor(Rami) ?

2 |= —Professor(Rami) ?

Jarrar © 2013

Based on [2]

17

Reasoning Services

Based on [2]

a—

> Remember that a DL is typically associated with reasoning procedures.

» There are several primitive/common reasoning services that most DL
reasoners support:

Concept Satisfiability

PIREERC = L Student 1 —Person

the problem of checking whether C is satisfiable w.r.t. X, i.e. whether there exists a
model | of X such that C' = ¢

Subsumption

2 EC S D Student £ Person

the problem of checking whether C is subsumed by D w.r.t. 2, i.e. whether C' < D' in
every model | of ¥

Satisfiability

2= Student = —Person

the problem of checking whether X is satisfiable, i.e. whether it has a model.
Jarrar © 2013 18

Reasoning Services (cont.)

Based on [2]

Instance Checking
2 |=C(a) Professor(john)

the problem of checking whether the assertion C(a) is satisfied in every model of =

Retrieval
{a|Z |= C(a) } Professor = Dima

Realization
{C| X |= C(a) } Dima = Professor

Jarrar © 2013

19

Reduction to Satisfiability

Based on [2]

y 4
Concept Satisfiability

2 [FC=1 < existsxs.t. 2 U{C(x)} has a model.

Subsumption
XI=CED « X u{Cn —=DX)}has no models.

D

@) -

Instance Checking
Y|=C@ <« X u{=Xx)}hasno models.

Jarrar © 2013 20

Constructor

Primitive concept
Primitive role

Top

Bottom
Complement
Conjunction
Disjunction
Universal quantifier

Extensional quantifier

Syntax Semantics
A Alc A
R Rl Alx Al
T Al
L ¢
—C A\ C!
cnbD C' nD!
CuD c' uD!
VR.C {x|vy.R"(x,y) > C'(y)}

JR.C

{x]3yR'(xy) A Cl(y)}

Jarrar © 2013

21

y

Some extensions of ALC

Constructor
Primitive concept
Primitive role
Top
Bottom
Complement
Conjunction
Disjunction
Universal quantifier

Extensional quantifier

Cardinality (N)

Qual. cardinality (Q)

Enumeration (O)
Selection (F)

Syntax

- 4 O >

cnb
CuD
VR.C
JR.C
>n R
<n R

>n R.C
<nR.C

{a, ...

f:C

2}

Semantics
Al < A
R! ; Al x Al
A -
¢
A\ C!
C' n D!
c' uD!
x| vy.R" (xy) > C(y)}
{x[3y.R' (xy) A Cl(y)}
{x|#y [R'(xy)}=n}
{x|#y [R'(xy)}=n}
x| #y [R'(x,y) A C'(y)} = n}
x| #y [R'(x,y) A C'(y)} = n}
{a'; ...a}
{x € Dom(f) | C!(fi(x))}

Jarrar © 2013

22

Cardinality Restriction

Based on [2]

Role quantification cannot express that a woman has at least 3 (or at
most 5) children.

Cardinality restrictions can express conditions on the number of fillers:
BusyWoman = Woman 1 (3=3CHILD)
ConsciouswWoman = Woman 1 (3=°CHILD)

Notice:
(7' R) < (3R.)

Jarrar © 2013

23

Cardinality Restriction

BusyWoman = Woman 1 (3=3CHILD)
ConsciouswWoman = Woman [I1 (3=> CHILD)

Mary: Woman,
CHILD:John,
CHILD:Sui,
CHILD:Karl

= ConsciousWoman(Mary) ?

Jarrar © 2013

Based on [2]

24

Roles as Functions

Based on [2]

~ Arole is functional, is the filler functionally depends on the
Individual, I.e., the role can be considered as a function:

R(x,y) < f(x) =v.

For example, the roles CHILD and PARENT are not
functional, while the roles MOTHER and AGE are
functional.

If a role Is functional, we write:
1f.C=f.c (selection operator)

Jarrar © 2013

25

Individuals

Based on [2]

n every interpretation different individuals are assumed to

denote different elements, i.e. for every pair of individuals
a, b, and for every interpretation I, if a # b then a' # b'.

This Is called the Unigue Name Assumption and is usually
assumed in database applications.

Example: How many children does this family have?
Family (f), Father(f, john), Mother (f, sue),
son(f,paul), Son(f,george), Son(f,alex)

= (=23 Son) (1)

Jarrar © 2013 26

Enumeration Type (one-of)

Weekday = {mon, tue, wed, thu, fri, sat, sun}

Weekday' = {mon!, tue', wed', thu', fri', sat, sun'}
Citizen = (Person m VLIVES.Country)

Palestinian = (Citizen n VLIVES.{Palestine})

Jarrar © 2013

27

RaC el‘ (http://www.racer-svstems.com/products/racerpro/index.phtm)

@ M c (R H hktp: o, racer-syskems . comfproductsiracer) 7 "':/;? v _/_/_, 1|, Racer logic v| ." - W @
- -
_naCE‘ 4|F‘roduct$HDownloadsHAbout usHNewsHContactHlmpressumli
Home . 5) _
Products What is RacerPro? An overview:
-RacerPro RACER stands for Renamed ABox and Concept Expression Reasoner.
- Version 2.0 |:.|._=,u|l|-if}.|;\l RECEI’F'I'EI |S thE CDmmEI’CIal name Df thE SEIft‘u'LfElr’E
- Features

The origins of RacerPro are within the area of description logics. Since description logics
provide the foundation of international approaches to standardize ontology languages in the
context of the so-called semantic web, RacerPro can also be used as a system for managing

- Release notes
- Manual

- RacerPorter semantic web ontologies based on OWL (e.g., it can be used as a reasoning engine for

- RacerPlus _ ontalogy editors such as Protégé). However, RacerPro can also be seen as a semantic web

- License options information repository with optimized retrieval engine because it can handle large sets of data
- Update guidelines descriptions (g0, defined using ROF). Last but not least, the system can also be used for

- Feedback / Support rmodal logics such as Km.

- How to order

-;ﬂﬂlsl - RacerPro as a Semantic Web Reasoning System and Information

- Downloads

- Allegro CL and Repository

Franz Inc. products

The semantic web s aimed at providing "machine-understandable” welb resources or by

Services augmenting existing resources with "machine-understandable" meta data. An important aspect
Technology of future systems exploiting these resources is the ahbility to process OWL (Webh Ontology
Company Language) documents (OWL KBs), which is the official sermantic web ontology language.

- Ontologies may be taken off the shelf or may be extended for domain-specific purposes
Website [domain-specific ontologies extend core ontologies). For doing this, a reasoning systerm i3
required as part of the ontology editing system. RacerPro can process OWWL Lite a5 well a3
vyl DL documents (knowledde bases). some restrictions apply, however, OWL DL

[English - Germman - falian] documents are processed with approximations for nominals in class expressions and
Last modified: 104312008 5:39 Fh user-defined XML datatypes are not yet supported.

[Feedback far this page]

Expand menu

Afirstimplementation of the sermantic web rule language (SYWEL) 15 provided with RacerProt1 .8
[see the Release Motes and the User Gulde for more infarmation about & description of the
sernantics of rules in this initial versiomn). w

Jarrar © 2013

http://www.racer-systems.com/products/racerpro/index.phtm

Description Logic Reasoners

 For example:

HermiT Sacer FaCT++ paarcL

They offer reasoning services for multiple TBoxes and ABoxes.
 They run as background reasoning engines.

« They understand DIG, which is a simple protocol (based on HTTP)
along with an XML Schema.

« Example: Student = Person <impliesc>
<catom name=“Student"/>

<catom name=“Person"/>
</impliesc>

Jarrar © 2013 29

“)'DIG Interface - Mozilla Firefox

I-r,q'v c x @ I:D htkp:fidig. sourceforge, netf

DIG Interface

The DIG Interface is a standardised XML interface to Description Logics systems developed by the DL
Implementation Group (DIG). This project provides:

1. XML Schemas;
2. Java XMLEeans for parsing, creating, and manipulating instances of the schemas;
3. Java Reasoners APl using the above to actually communicate with DIG reasoners such as FaCT++ and Racer.

wo |V -8

Contents
+ XML Schemas
+« XMLEeans
« Reasonears AP
« Downloads
« Mailing List
s Examples
e Reference

XML Schemas
There are currently two XML schemas for DIG:

o DI 1.0-namespace: heep: Hdl kr. Drgfdlg.flang
PO 1 N B Bty S smm s m

Jarrar © 2013 30

http://dig.sourceforge.net/

DIG Protocol

" DIG is only an XML schema for a description logic along with ask/tell
functionality

You write a new Knowledge base (using the DIG XML syntax), and send
It to Racer using the TELL functionality.

You can then write you Query/Question (using the DIG, XML syntax),
and send it to Racer using the ASK functionality.

You may communicate with the Racer through HTTP or SOAP.

Jarrar © 2013 31

Create e a new Knowledge Base

"The newkB Message
<?xml version="1.0" encoding="UTF-8"?>
<newKB
xmlns="http://dl.kr.org/dig/2003/02/lang"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://dl.kr.org/dig/2003/02/lang
http://dl-web.man.ac.uk/dig/2003/02/dig.xsd"/>

The Response Message

<?xml version="1.0" encoding="UTF-8"?>

<response

xmlns="http://dl.kr.org/dig/2003/02/lang"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://dl.kr.org/dig/2003/02/lang
http://dl-web.man.ac.uk/dig/2003/02/dig.xsd">

<kb uri="urn:uuid:abcdefgh-1234-1234-12345689ab"/>

This URI should then be used during TELL and
ASK requests made against the knowledge base
Jarrar © 2013

Tell Syntax

Based on [4]

ERTEL L request must contain in its body a tells element, which itself
consists of a number of tell statements.

Example: Driver £ Person 1 3Drives.Venhicle

<?xml version="1.0" encoding="1S0O-8859-1"?>

<tells
xmins="http://dl.kr.org/dig/2003/02/lang"
xmins:xsi="http://mww.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://dl.kr.org/dig/2003/02/lang
http://dl-web.man.ac.uk/dig/2003/02/dig.xsd"
uri="urn:uuid:abcdefgh-1234-1234-12345689ab">

<defconcept name="driver"/>

<equalc>
<catom name="driver"/>
<and>
<catom name="person"/>
<some>
<ratom name="drives"/>
<catom name="vehicle"/>
</some>
</and>
</equalc>

<defconcept name="person"/>
<defconcept name="vehicle"/>
<defrole name="drives"/>

<fells> Jarrar © 2013

33

Tell Syntax

Tell Language

Primitive <defconcept name="CN"/>
Concept <defrole name="CN"/>
Introduction | <deffeature name="CN"/>
<defattribute name="CN"/>
<defindividual name="CN"/>
Concept <impliesc>C1 C2</impliesc>
Axioms <equalc>C1 C2</equalc>
<disjoint>C1... Cn</disjoint>
Role <impliesr>R1 R2</impliesc>
Axioms <equalr>R1 R2</equalr>
<domain>R E</domain>
<range>R E</range>
<rangeint>R</rangeint>
<rangestring>R</rangestring>
<transitive>R</transitive>
<functional>R</functional>
Individual <instanceof>| C</instanceof>
Axioms <related>I1 R 12</related>

<value>| A V</value>

Concept Language

Expressions

Primitive <top/>
Concepts <bottom/>
<catom name="CN"/>
Boolean <and>ELl... En</and>
Operators <or>El... En</or>
<not>E</not>
Property <some>R E</some>
Restrictions | <all>R E</all>
<atmost num="n">R E</atmost>
<atleast num="n">R E</atleast>
<iset>I1... In</iset>
Concrete <defined>A</defined>
Domain <stringmin val="s">A</stringmin>

<stringmax val="s">A</stringmax>
<stringequals val="s">A</stringequals>
<stringrange min="s"
max="t">A</stringrange>

<intmin val="i">A</intmin>

<intmax val="i">A</intmax>

<intequals val="i">A</intequals>
<intrange min="{"

max="]">A</intrange>

Role
Expressions

<ratom name="CN"/>

<feature name="CN"/>
<inverse>R</inverse>

<attribute name="CN"/>
<chain>F1... FN A</chain>
Individuals <individual name="CN"/>

Jarrar © 2013

34

Ask Syntax

f‘lﬁ An ASK request must contain in its body an asks element.
Multiple queries in one request is possible.

<?xml version="1.0"?>

<asks
xmins="http://dl.kr.org/dig/2003/02/lang">
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://dl.kr.org/dig/2003/02/lang"
http://dl-web.man.ac.uk/dig/2003/02/dig.xsd"
uri="urn:uuid:abcdefgh-1234-1234-12345689ab">

. <satisfiable id="q1">
KB |= Vehicle <catom name="Vehicle"/>

asks about satisfiability of _</satisfiable>

the Vehicle concept / <descendants id="g2">
<and>

<catom name="person"/>
<some>

a | Z |= Peron(a) m3Drives.\ehicle <ratom name="drives"/>

<catom name="vehicle"/>
asks for all those concepts subsumed by e e

the description given, i.e. all the drivers </and>
</descendants>
) <types id="g3">
C| X2 |= C(JohnSmith) <individual name="JohnSmith"></individual>

et e - </types>
asks for the known types of the _,_ .~

given individual Jarrar © 2013

Ask Language

Primitive Concept
Retrieval

<allConceptNames/>
<allRoleNames/>
<allindividuals/>

Satisfiability

<satisfiable>C</satisfiable>
<subsumes>C1 C2</subsumes>
<disjoint>C1 C2</disjoint>

Concept Hierarchy

<parents>C</parents>
<children>C</children>
<ancestors>C</ancestors>
<descendants>C<descendants/>
<equivalents>C</equivalents>

Role Hierarchy

<rparents>R</rparents>
<rchildren>R</rchildren>
<rancestors>R</rancestors>
<rdescendants>R<rdescendants/>

Individual Queries

<instances>C</instances>
<types>I</types>

<instance>| C</instance>

<roleFillers>I R</roleFillers>
<relatedIindividuals>R</relatedIndividuals>

Jarrar © 2013

36

sExamples of Using Description Logic In
Conceptual Modeling and Business rules

Jarrar © 2013

37

UML Class diagram

(with a contradiction and an implication)

A

Person
A
{disjoint}
| Student = Person
‘ PhDStudent = Person
Student Employee Employee = Person
PhD Student = Student i Employee
A A .
Student m Employee = L
PhD Student

Jarrar © 2013

38

Infinite Domain: the democratic company

Based on [3]

Supervisor | .
7y Supervisor E 372 Supervises.Employee

Employee = Supervisor

Supervises

Employee | 01

implies

“the classes Employee and Supervisor necessarily contain an infinite
number of instances”.

Since legal world descriptions are finite possible worlds satisfying the
constraints imposed by the conceptual schema, the schema is inconsistent.

Jarrar © 2013 39

Example (in UML, EER and ORM)

..1 WorksF
'IlEmployee|1 Qoo or Project
TopMange:lm Manages
WorksFor
Employee
Manages

TopManager

Employee

TopManger

(roect

Jarrar © 2013

1..1
anage

Project

1.1
4

40

Example (in UML, EER and ORM)

7

1..1 WorksFor)
Employee PrOJectl
TopMange: |1..1 Manages

Employee = 371 WorksFor.Project

TopManager E Employee n 3=tManages.Project

?
|= WorksFor.Project = Manages.Project

Jarrar © 2013

41

Person

{complete,disjoint}
| |

Professor Student

Course

1.1

Jarrar © 2013 42

Another Example

' 1.1 Owns
Person x Car

1
' equal
4

Drives

1.1

Person = 3= Owns.Car 1 371 Drives.Car

Drive = Owns

» The first 1..1 cardinality constraint means that every person must owns one car.

* The secondl..1 cardinality constraint means that every person must drives one car.

* The equal constraint means that every person who owns a car is allowed to only
drive that car, and vice versa.

=>» The equal constraint is implied by both cardinality constraints.

Jarrar © 2013 43

Homework (Reason about UML/EER Diagrams)

" 1- Create a UML/EER diagram that contains some contradictions and
Implications.
2- Formulate this diagram in description logic,

3- Write at least 5 questions (reasoning services) to know whether the
schema/concept/rule is satisfiable, and 3 questions whether
something in the schema is implied?

Hint: contradictions\implication can be achieved throw the wrong use of
disjointness and cardinality constraints (see examples in the next slide).

=>» Please remark that this project is not only to help you practice Description Logics, but
also: 1) build correct UML/EER models and find problems automatically, 2) Reason
about rules and business rules, and 3) you think of another usage (open your mind)!

Each student should deliver one pdf file, contains: 1) the diagram 2) its
formalization in DL, 3) the reasoning questions.

Jarrar © 2013

44

- ",

Ontology

Recall that a TBox can be used to specify the meaning of a terminology.
That is, specify meaning in logic.

Recall that a TBox can be depicted in EER/UML

=>»You may build your TBox in OWL (the Ontology Web Language), and
share it on the web, so that that others can use it a reference to
meaning of a terminology (ontology).

=>» This will be the topic of the coming lectures.

Jarrar © 2013 45

